当前位置: 首页 > news >正文

网站招代理线上卖护肤品营销方法

网站招代理,线上卖护肤品营销方法,合肥网站制作哪家有名,网络设计培训文章目录 🍀引言🍀什么是梯度下降?🍀损失函数🍀梯度(gradient)🍀梯度下降的工作原理🍀梯度下降的变种🍀随机梯度下降(SGD)🍀批量梯度下降&#xf…

文章目录

  • 🍀引言
  • 🍀什么是梯度下降?
  • 🍀损失函数
  • 🍀梯度(gradient)
  • 🍀梯度下降的工作原理
  • 🍀梯度下降的变种
    • 🍀随机梯度下降(SGD)
    • 🍀批量梯度下降(BGD)
    • 🍀小批量梯度下降(Mini-Batch GD)
  • 🍀如何选择学习率?
  • 🍀梯度下降的相关数学公式
  • 🍀梯度下降的实现(代码)
  • 🍀总结

🍀引言

在机器学习领域,梯度下降是一种核心的优化算法,它被广泛应用于训练神经网络、线性回归和其他机器学习模型中。本文将深入探讨梯度下降的工作原理,并且进行简单的代码实现


🍀什么是梯度下降?

梯度下降是一种迭代优化算法,旨在寻找函数的局部最小值(或最大值)以最小化(或最大化)一个损失函数。在机器学习中,我们通常使用梯度下降来最小化模型的损失函数,以便训练模型的参数。
这里顺便提一嘴,与梯度下降齐名的梯度上升算法目的是使效用函数最大。


🍀损失函数

在使用梯度下降之前,我们首先需要定义一个损失函数。损失函数是一个用于衡量模型预测值与实际观测值之间差异的函数。通常,我们使用均方误差(MSE)作为回归问题的损失函数,使用交叉熵作为分类问题的损失函数。


🍀梯度(gradient)

梯度是损失函数相对于模型参数的偏导数。它告诉我们如果稍微调整模型参数,损失函数会如何变化。梯度下降算法利用梯度的信息来不断调整参数,以减小损失函数的值。

🍀梯度下降的工作原理

梯度下降的核心思想是沿着损失函数的负梯度方向调整参数,直到达到损失函数的局部最小值。具体来说,梯度下降的步骤如下:

  • 初始化模型参数:首先,随机初始化模型参数或使用某种启发式方法。

  • 计算损失和梯度:使用当前模型参数计算损失函数的值,并计算损失函数相对于参数的梯度。

  • 参数更新:根据梯度的方向和学习率(learning rate)本文我称其为eta,更新模型参数。学习率是一个控制步长大小的超参数,它决定了每次迭代中参数更新的大小。

  • 重复迭代:重复步骤2和3,直到损失函数的值收敛到一个稳定的值,或达到预定的迭代次数。

🍀梯度下降的变种

在梯度下降的基础上,发展出了多种变种算法,以应对不同的问题和挑战。其中一些常见的包括

🍀随机梯度下降(SGD)

随机梯度下降每次只使用一个随机样本来估计梯度,从而加速收敛速度。它特别适用于大规模数据集和在线学习。

🍀批量梯度下降(BGD)

批量梯度下降在每次迭代中使用整个训练数据集来计算梯度。尽管计算开销较大,但通常能够更稳定地收敛到全局最小值。

🍀小批量梯度下降(Mini-Batch GD)

小批量梯度下降综合了SGD和BGD的优点,它使用一个小批量样本来估计梯度,平衡了计算效率和收敛性能。

🍀如何选择学习率?

学习率是梯度下降的关键超参数之一。选择合适的学习率可以加速收敛,但过大的学习率可能导致不稳定的训练过程。通常,我们可以采用以下方法选择学习率:

  • 网格搜索:尝试不同的学习率值,通过验证集的性能来选择最佳值。

  • 学习率衰减:开始时使用较大的学习率,随着训练的进行逐渐减小学习率。

  • 自适应学习率:使用自适应学习率算法,如Adam、Adagrad或RMSprop,它们可以自动调整学习率以适应梯度的变化。

🍀梯度下降的相关数学公式

本人数学不好,这里有说的不清楚的地方还请见谅,谢谢佬~
首先我们通过图像认识一下损失函数
在这里插入图片描述
这里的步长指的是,可能有些人会好奇为啥有一个负号呢?因为对称轴左侧的导数都是负值,这里加一个负号不就正了嘛
在这里插入图片描述

具体推导过程请查看相关佬的文章(哭~)

🍀梯度下降的实现(代码)

首先我们导入我们需要的库

import numpy as np
import matplotlib.pyplot as plt

之后我们需要举一个例子,这里我们采用numpy里面的一个分割函数linspace,同时我们举一个函数的例子

plt_x = np.linspace(-1,6,141)
plt_y = (plt_x-2.5)**2-1

之后我们使用show进行展示一下图像

plt.plot(plt_x,ply_y)
plt.show()

运行结果如下
在这里插入图片描述

上图看起来就是一个普通的曲线,方便我们进行理解

接下来我们需要两个函数,一个为了返回导数,一个为了返回对应的y值

def dj(thera):return 2*(thera-2.5) # 求导
def j(thera)return (thera-2.5)**2-1  # 求对应的值

接下来是梯度下降的关键位置了,这里我们需要初始化两个参数以及一个范围参数,同时设置一个while循环,将前一个thera保存在last_thera中,后一个thera是前一个thera和步长的差值,这里的步长就是梯度个参数eta的乘积,最后使用if函数来终结循环,最终我们将最小值点的值、导数、以及自变量打印出来

eta = 0.1
theta =0.0
epsilon = 1e-8
while True:gradient = dj(theta)last_theta = thetatheta = theta-gradient*eta if np.abs(j(theta)-j(last_theta))<epsilon:breakprint(theta)
print(dj(theta))
print(j(theta))

运行结果如下
在这里插入图片描述
这里我们也可以使用列表来看看到底进行了多少次thera的循环

eta = 0.1
theta =0.0
epsilon = 1e-8
theta_history = [theta]
while True:gradient = dj(theta)last_theta = thetatheta = theta-gradient*eta theta_history.append(theta)if np.abs(j(theta)-j(last_theta))<epsilon:breakprint(theta)
print(dj(theta))
print(j(theta))len(theta_history)

运行结果如下

在这里插入图片描述
还可以绘制图像进行直观查看

plt.plot(plt_x,plt_y)
plt.plot(theta_history,[(i-2.5)**2-1 for i in theta_history],color='r',marker='*')
plt.show()

运行结果如下
在这里插入图片描述
这样的话就很直观了吧~

🍀总结

本节只介绍梯度下降的简单实现,下节继续学习此法中eta参数的调节

请添加图片描述

挑战与创造都是很痛苦的,但是很充实。

http://www.dtddedu.com/news/438.html

相关文章:

  • 新手学做网站 cs5 pdf哈尔滨网站制作软件
  • 淘宝客的网站是自己做的吗优化营商环境工作总结
  • 购物网站建设项目策划书泉州百度首页优化
  • 商梦建站app开发成本预算表
  • 长春阿凡达网站建设深圳网络推广最新招聘
  • 微商城手机网站制作公司上海最新发布最新
  • 深圳画册设计品牌aso优化吧
  • 阿里巴巴网站怎么做seo搜索是什么
  • 装潢设计工作室排名优化课程
  • 网站备案人授权日本今日新闻头条
  • 杭州下沙网站建设时事热点新闻
  • 嘉兴企业网站制作广告设计公司
  • h5制作官网登录淘宝seo什么意思
  • 微网站建设难不难郑州网络推广公司
  • 个人可以做公益网站吗软文营销文章案例
  • 网站建设特效素材网站推广优化是什么意思
  • 网站背景尺寸大数据培训
  • 企业怎么做网站做网站的公司搜索引擎优化排名案例
  • 有哪些可以做策划方案的网站北京seo公司
  • 网站加入联盟如何做好seo优化
  • 建网站哪个公司好青岛seo网络推广
  • 阿里云做网站多少钱樱花bt引擎
  • 做网推的网站苏州百度推广开户
  • 关于绿色环保网站的建设历程久久seo综合查询
  • 五金配件东莞网站建设技术支持促销策略
  • 网站结构分析怎么做seo1搬到哪里去了
  • 大型网站稳定性建设视频课程推广seo优化公司
  • 机械做网站好处如何搭建公司网站
  • 如何做国外的电商网站seo快排公司哪家好
  • wordpress 注册会员默认权限武汉seo网站排名